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Abstract

An embedded atom model (EAM) interatomic potential that reproduces room temperature elastic behavior for a-Zr

is developed. At variance with previous potentials from the literature, the present one predicts a self-interstitial re-

laxation volume consistent with the relatively low measured value. A critical review of results for static and dynamic

properties of point defects is undertaken by comparing with predictions from other potentials and with experimental

®ndings. This survey allows us to conclude that most well ®tted EAM potentials give low vacancy migration energies

and a basal crowdion as the stable interstitial con®guration with fast 1D migration. Ó 1999 Published by Elsevier

Science B.V. All rights reserved.

PACS: 61.72.-y; 61.72.Ji; 66.30.Fq

1. Introduction

There have been several attempts in the literature to

develop simple many-body interatomic potentials for the

hcp structure. These potentials aim to reproduce as

closely as possible the experimental values of the ®ve

elastic constants and the c/a ratio, these being relevant

properties for the determination of the long range dis-

placement ®eld and defect anisotropy, respectively. Oh

and Johnson [1,2] used Voigt averages for bulk and

shear moduli to approximately match the elastic con-

stants, with almost ideal c/a ratio in [1] for Mg, Zr and

Ti and a more realistic value in [2] for Zr. Igarashi et al.

[3] were the ®rst to develop EAM type potentials [4,5]

for a number of hcp metals (Zn, Mg, Co, Zr, Ru, Ti, Hf

and Be) attempting to exactly match those properties;

however the inner strain contribution to the elastic

constants was neglected. Accounting for this term,

Pasianot and Savino [6] found that EAM type potentials

impose restrictions on the elastic constants of an hcp

structure, among them,

�3C12 ÿ C11�=2 > C13 ÿ C44; �1�
and reported potentials for some hcp metals (Co, Mg,

Ti, Hf) exactly matching the experimental values of the

®ve elastic constants and the c/a ratio. It is worth noting

that the above condition is strongly violated for Zn and

Cd and only slightly for Zr at 0 K. Using an approxi-

mate parametrization scheme for Ti and Zr, Ackland

[7,8] developed EAM type potentials that ®t the c/a ratio

within a fraction of 1% and reasonably well the low

temperature experimental elastic constants [9], with de-

partures of about 10% for C33 and C13 in Ti and 25% for

C12 in Zr. Also for Zr, Goldstein and J�onsson [10] re-

ported an EAM that accounts for inner strains, though

due to their ®tting scheme all the elastic constants are

matched within 5% except C44 which is larger by 25%,

being the c/a ratio well reproduced.

The aim of the present study is to develop an EAM

potential for Zr to be used in the computer simulation of

defects, as well as to carry out a consistent comparison

with predictions of other selected potentials and with

experimental ®ndings in an e�ort to assess the reliability

of the model.

The work is organised as follows: Section 2 is de-

voted to the potential; results for point defects and small
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vacancy clusters are reported in Section 3; in Section 4

the results are discussed, and ®nally Section 5 gives a

brief summary and advances some perspectives for fu-

ture work.

2. The interatomic potential. General considerations and

construction

In EAM type approaches [4,5], the energy of an

atomic assembly is written as a summation over sites,

each term being

Ei �
X

j

V �Rij� � F �qi�; �2�

where V stands for a pair potential, F is the so called

embedding function and q is interpreted as a local

electronic density built by a superposition of pair-like

functions

qi �
X

j

u�Rij�: �3�

It has been pointed out by several authors [11±14] that

the isotropic interaction embodied in the many-body

term of Eq. (2) is not able to represent covalent aspects

possibly important in transition metals. Evidence for

this is given for instance by the negative values of the

Cauchy pressure of Cr (bcc), and Be and Y (hcp), C12±

C44 and C13±C44, respectively. Further developments of

the EAM form including angular terms are able to al-

leviate this pitfall [11,14]; however, the constraint im-

posed by Eq. (1) seems to be of a di�erent nature. In this

sense it is interesting to write it down for a cubic fcc

crystal in which axis [1 1 1] is brought into coincidence

with axis [0 0 0 1] of the hcp lattice, such that the

stacking sequence ABAB. . . is turned into ABCAB. . .
Directions 1, 2 and 3 stand now for �1 1 0�; �1 1 2� and

�1 1 1�; respectively. Denoting by Eij the elastic constants

in this frame and by Cij those in the standard cubic one,

the result obtained is

3E12 ÿ E11

2
> E13 ÿ E44 () �C11 ÿ C12� � C44 > 0; �4�

where the right-hand side must be true for any elastically

stable cubic lattice.

Considering that Eq. (1) is satis®ed for Zr at room

temperature, an interatomic potential of the EAM type

is developed. The ®tting procedure, next outlined, fol-

lows Ref. [6]. Without loss of generality F(q) is imposed

to have null ®rst derivative at the perfect lattice density

q0, this makes V(R) an `e�ective pair potential'. The

atomic electronic function u is chosen as a Thomas±

Fermi like screening function continuous up to the sec-

ond derivative and smoothly matched to zero at the cut-

o� distance Rc,

u�x� � u0 f �x�; �5�

f �x� �
exp�ÿ5x�=x; x6Rm;

�xÿ Rc�3�a1x2 � a2x� a3�; Rm < x6Rc;

0; Rc6 x;

8><>:
where u0 is a constant selected such as q0 � 1; x is

measured in basal lattice constant units and the other

parameters are reported in Table 1. V(x) is given the

form of a seven-piece cubic polynomial continuous up to

the second derivative according to

V �x� �
X7

k�1

Ak�xk ÿ x�3H�xk ÿ x� �6�

H(x) being the Heaviside step function, xk knot points

(adequately chosen) and Ak coe�cients determined

through the ®tting procedure; both sets of values are

quoted in Table 1. Notice the above equation permits

some control of the repulsive wall by including knots for

distances below ®rst neighbours, without spoiling the

®tting to perfect lattice properties. These seven coe�-

cients plus F0 and F000, embedding function and its second

derivative at the perfect lattice, constitute nine un-

knowns exactly solved for through a system of equations

[6] involving the two lattice parameters a and c, the

cohesive energy EC, the ®ve elastic constants and an

Table 1

Potential parameters, V(x) is in eV, xk in units of the basal lattice parameter and u is dimensionless

k xk Ak

1 1 )38.4084159

2 1.05 36.9240324

V(x) 3 1.55 )6.0670690

4 1.60 8.4563250

5 1.65 )4.6893208

6 1.70 7.9557179

7 1.75 )5.6449389

a1 a2 a3 Rm Rc u0

u(x) )0.44417136 1.07926027 )0.67936231 1.3 1.65 11.28516908
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approximate value for the vacancy formation energy Ef
v.

These quantities are all reported in Table 2, together

with the percental deviation of the elastic constants at

room temperature, exactly ®tted by the potential, with

respect to 4 K data. Notice the maximum deviation is

somewhat lower than the ones quoted in the previous

section for other potentials.

In order to extend the domain of F(q) to densities

beyond the vicinity of the perfect lattice value, Eq. (2) is

constrained to satisfy Rose's et al. universal equation of

state [18]. This is also a way of partly providing infor-

mation on interactions for shorter than ®rst neighbours

distances. Such an equation gives the energy of uni-

formly compressed or dilated lattices through a scaled

variable,

E�~a� � ÿEC�1� ~a� exp�ÿ~a� �7�
with

~a � 3�XB=EC�1=2�a=a0 ÿ 1�;
where X is the atomic volume, B the Voigt average bulk

modulus and a0 the basal lattice parameter at equilib-

rium (zero stresses). F(q) is numerically obtained by

equating the left-hand side of Eq. (2) to Eq. (7) and

subtracting the pair term of Eq. (6), q being computed

simultaneously according to Eq. (3). The potential is

depicted in Fig. 1.

We note that the potential third derivative is dis-

continuous at the knot points, some of which resulted

very close to lattice nodes. Besides, the second derivative

shows an oscillatory behavior at the very potential tail,

where there are two shells of 18 neighbours. The so

deduced potential predicts a stable hcp structure

(EC� 6.25 eV) with respect to other common crystal

structures such as fcc (EC� 6.23 eV) and bcc (EC� 6.20

eV) and a positive I2 stacking fault energy (c� 69.4 mJ/

m2), the latter being essentially controlled by varying the

cut-o� radius.

3. Results

The calculations performed refer to point defects and

small vacancy clusters. Defect structure computations

are carried out with static relaxation based on the con-

jugate gradients technique [19], which allows us to

compute formation and migration energies, as well as

dipole tensors and relaxation volumes [20,21]. Atomic

eigenfrequencies are obtained by either diagonalizing the

force constant matrix for each individual atom or for a

cluster of atoms surrounding the defect [20]. Frequencies

are used for entropy calculations and to determine the

stability of a given con®guration, this including the

search of migration saddle points. Molecular dynamics

[22] are also used to study the thermal perfect lattice

behavior. Related to this, it must be pointed out that the

potential, though appropriate for the calculation of

lattice frequencies, which depend on ®rst and second

Table 2

Experimental values exactly ®tted, a in nm [15], Ec [16] and Ef
v [17] in eV and Cij in eV/nm3 [9]. In parentheses percental deviation from

4 K data

a c/a Ec Ef
v C11 C12 C13 C33 C44

0.3232 1.593 6.25 1.74 895.1 454.4 407.6 1028.1 199.7

(8.4) ()7.7) ()1.1) (4.7) (13.4)

Fig. 1. Interatomic potential for Zr: (a) e�ective pair interac-

tion; (b) embedding function.
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derivatives, is not for their variations as the lattice is

expanded or contracted, which depend on the third one.

Consequently, the lattice thermal expansion is badly

predicted, contracting on the basal plane up to about

200 K and expanding afterwards, while the c-axis always

expands.

Table 3 reports the computed values for the vacancy

formation and migration energies Ef
v and Em

v , as well as

entropies Sf
v and Sm

v , and the corresponding relaxation

volumes Vr; entropy refers to independent oscillators for

constant pressure condition.

The studied clusters of n vacancies, schematically

depicted in Fig. 2, are those of highest binding free en-

ergy Gb found in [23] and such that this quantity in-

creases with n. The results quoted in Table 4 are:

binding energy Eb de®ned as Eb� (nEf
v ) Ef

nv)/n where

Ef
nv is the formation energy for a given cluster, relax-

ation volume Vr, formation entropy Sf and binding free

energy Gb de®ned as for Eb. Positive values for binding

energies indicate tendency to clustering.

Finally in Table 5 we report formation energies and

relaxation volumes for standard sel®nterstitials con®g-

urations (see e.g. Fig. 2 in Ref. [21] for details): basal

crowdion BC, basal dumbbell BS, basal octahedral BO,

crowdion C, basal tetrahedral BT, octahedral O, tetra-

hedral T and axial dumbbell S. A unique feature of our

potential is that the calculated interstitial relaxation

volume is in reasonable agreement with the relatively

low experimental value of Vi
r� 0.6 � 0.15X [24]. Vi-

bration mode analysis shows that all the con®gurations,

except BC and BS, do possess imaginary eigenfrequencies,

Table 3

Computed magnitudes for vacancy formation and migration:

energies E (eV), entropies S (Boltzmann's constant, kB) and

relaxation volumes Vr (at.vol.). Columns labelled Vac, A-jump

and B-jump refer to the relaxed vacancy, non-basal and basal

jumps, respectively

Vac A-jump B-jump

E 1.74 0.59 0.57

S 4.15 6.36 5.93

Vr )0.20 )0.25 )0.29

Fig. 2. Scheme and naming convention for the considered vacancy clusters.

Table 4

Computed magnitudes for vacancy clusters: binding energy Eb

(eV), relaxation volume Vr (at.vol.), formation entropy Sf (kB),

and binding free energy at 1000 K Gb (eV)

Eb Vr Sf Gb

2.1 0.11 )0.40 8.01 0.09

2.2 0.12 )0.41 7.57 0.08

3.1 0.23 )0.73 11.35 0.20

3.2 0.23 )0.49 8.86 0.12

3.3 0.22 )0.65 11.71 0.20

4.1 0.33 )0.51 10.39 0.19

5.1 0.40 )0.43 10.77 0.22

7.5 0.39 )1.50 21.62 0.30
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meaning instability. For BC, real eigenfrequencies are

obtained by using a coupled cluster of about 150 atoms

comprising the defect; the same holds for BS though one

eigenfrequency results very low. In this mode both at-

oms of the dumbbell vibrate with high amplitude along

the close-packed direction coincident with the defect

axis. This fact plus the low energy di�erence between the

con®gurations of about 0.01 eV suggests a high unidi-

rectional mobility. The possibility of BC reorientation to

escape from its atom row is also explored, ®nding a

migration energy of 0.13 eV for jump BB0 depicted in

Fig. 3; notice this is geometrically di�erent from jump

BB00, for which no saddle point was found.

4. Discussion

Present results are compared with those obtained

from other potentials [2,7,8,10,21] either computed by us

when necessary, or taken from the literature.

Table 3 shows vacancy migration energies of about

Em
v � 0.56 eV, slightly favouring jumps on the basal

plane. Similar values and jump anisotropy are predicted

by other realistic EAM potentials modeling Zr: 0.86 [8],

0.63 [10] and 0.78 [2], the ®rst two calculated by us and

the latter reported in the original reference. It should be

noted that, within the framework of semiempirical in-

teraction models, Em
v and Vi

r are strongly correlated

magnitudes both depending on the potential sti�ness at

similar interaction distances; in this sense the above Em
v

values from [8,10,2] may be in excess because, contrary

to ours, their predicted Vi
r overestimate the experi-

mental value [24] by about 50%. The above vacancy

migration energies are at variance with higher previous

estimates from non-equilibrium short range pair poten-

tials ®tted to ideal c/a ratio e.g. 1.15 eV [25] and 1.47 eV

[26], which in addition give the opposite anisotropy. The

present results are however consistent with experimental

®ndings based on positron annihilation (PAS) tech-

niques that estimate a value in the range 0.6±0.7 eV [27].

Such an unexpectedly low value was later ascribed to an

e�ect produced by trace levels of the ultra-fast di�user

Fe, migrating through Fe-vacancy pairs [28]. Although

the enhancement of selfdi�usion due to Fe impurities

has been established beyond doubt [29], PAS experi-

ments using high purity Zr samples [30] have not been

conclusive in either accepting or rejecting the low value

of Em
v as being due to Fe impurities. Low values of Em

v

do have important implications on Ef
v when considering

recent selfdi�usion experiments on high purity Zr single

crystals [31], for which an activation energy Q� 3.17 eV

was obtained, somewhat lower than previous me-

ausurements extrapolated for low temperatures [32]. By

assuming a standard vacancy mechanism Q�Ef
v + Em

v ,

the above value gives Ef
v � 2.5 eV. This is higher than

the semiempirical expectation of about 1.8 eV [17] but

not inconsistent with experimental results from PAS [17,

30] that stated the lower bound of 1.5 eV.

Going back to Table 3, it is seen that migration en-

ergies favor di�usion on the basal plane while migration

entropies favor the opposite; a similar behavior is found

for the other EAM potentials. It should be pointed out

that reliable entropy values are very di�cult to obtain

because they depend on ®ne potential details not nor-

mally controlled in the ®tting procedure. This is illus-

trated by the quite di�erent predictions of the

preexponential factor for self-di�usion D0: 2 ´ 10ÿ2,

3.4 ´ 104 and 3 ´ 10ÿ6 m2/s, calculated for the present

potential and for the ones of Refs. [8,2] respectively, the

experimental result [31] being D0� 9.0 ´ 10ÿ5 m2/s.

Making reference to the small vacancy clusters con-

sidered, Table 4 shows higher relaxation volumes for

clusters on the basal plane with both, top and bottom

sides, bounded by atoms (cases 3.1 and 7.5); this is a

signal of vacancy loop nucleation. Previous calculations

[20] carried out with short range EAM-type potentials

®tted to Voigt averages for the elastic constants, predict

lower values than the present ones, the discrepancy be-

ing larger for clusters on the basal plane. Also shown in

Table 4 is the increase of binding energy with cluster

Table 5

Self-interstitial formation energies (eV) relative to the stable con®guration Ef (Bc)� 2.50 eV and relaxation volumes (at.vol.)

Bc Bs Bo C BT O T S

Ef 0.00 0.01 0.13 0.28 0.30 0.30 Unst. 0.54

Vr 0.86 0.87 0.77 0.91 0.92 1.06 0.70

Fig. 3. Possible migration paths for the basal crowdion inter-

stitial, BC, leading to reorientation.
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size; this is in agreement with calculations from

[20,24,33], the latter using a pair potential built in terms

of local pseudopotential theory. Present results are

however up to twice those of [33] for basal clusters and

up to ®ve times for void-type clusters (4.1 and 5.1). The

reported positive formation entropies are in line with the

general lattice softening, and higher for clusters with

larger relaxations. Taking Eb as a measure of stability,

our results would indicate that 3D clusters (e.g. 5.1)

could be as stable as 2D ones on the basal plane; how-

ever by considering the vibrational entropy contribution

to the binding free energy Gb, last column in Table 4, the

latter clusters are favored. This is the same conclusion

reached in [33], though those authors base their state-

ment on con®gurational energy analysis only.

Regarding the self-interstitials, Table 5 suggests

con®gurations can be grouped according to their for-

mation energy in three sets: (i) BC and BS, the ®rst being

marginally stable with respect to the second, (ii) B0, C,

BT, O, (iii) S and T. The same classi®cation is obtained

for other potentials including Ti [2,7,8,10,21] though

details vary. Actually Ref. [10] seems to have not con-

sidered BS; also neither BC nor BS were considered in

Ref. [2]; simulations by the present authors using the

potential ZRA of [2] give BS as the stable interstitial,

contrary to the reported one BO , whereas for their ZRB

(®tted to ideal c/a ratio) about the same energy is pre-

dicted for (the reported) C and (the here calculated) BS .

The evidence is therefore that these two con®gurations,

BC and BS, are always predicted as the minimum energy

ones by realistic EAM-like potentials for Zr and Ti.

From the experimental side there are apparently

con¯icting results. In one experiment, Exp. I from now

on, X-ray Huang di�use scattering (HDS) was per-

formed on electron irradiated single crystals at liquid

helium temperatures [24]; interstitial con®gurations

consistent with O, S or T (all tetragonal in symmetry)

were reported as possible candidates. The only other

con®guration considered, BC (orthorhombic), was dis-

carded on the grounds that the measured ratio for the

axial/basal dipole components, 1.1 � 0.2., was much

higher than expected. The authors advocated the view of

a high percentage of correlated recovery that could be

the outcome of an interstitial±vacancy distance partic-

ularly small or a preferentially 1 or 2D interstitial mi-

gration.

In another experiment, Exp. II from now on, the

internal friction technique was employed on neutron

irradiated polycrystalline wires at 77 K [34]; `frozen free

split' peaks [35] with reorientation energies E1
R� 0.17 eV

and E2
R� 0.27 eV, respectively, located at 72 and 115 K

were proposed. The authors concluded that their results

were best explained assuming a monoclinic defect un-

dergoing 3D migration.

Unfortunately, in Exp. I no HDS measurements were

undertaken that could reveal coupling between axial and

basal components of the dipole tensor, namely invariant

p�2� � P 2
13 � P 2

23 [36]; this is null for all the con®gurations

here considered but C. We also note that components

P13 and P23 have no bearing on the (reported) interstitial

relaxation volume. With respect to Exp. II, according to

general anelasticity criteria [35] applied to the hcp

structure only monoclinic or triclinic defects may give

rise to internal friction split peaks. This leaves us just

with con®guration C among the common ones, which

belongs to the former class. We recall split peaks may

appear if there is one defect elementary jump much

faster than any other that contributes to some but not all

of the compliances undergoing relaxation. Such a situ-

ation may arise for compliance S44 among the two rel-

evant to this con®guration (S44 and S11±S12). This

implies C would ®t in this picture provided there exists a

jump that is orders of magnitude faster than any other,

contributing only to S44 relaxation. Fig. 4 explains the

point; C interstitials are grouped in two sets, C� and Cÿ,

according to their axial coordinate �c/4 respectively,

each set having three possible orientations A, A0, A00.
Therefore, transitions C�A±C�A do not produce relax-

ation, those of C�A±C�A0 or C�A±C�A00 a�ect S11±S12, those

of C�A±CÿA0 or C�A±CÿA00 relax both compliances, ®nally

those of C�A±CÿA relax only S44 and are the ones that

would have to be the fastest.

The above might be supported by present calcula-

tions, in spite that C con®guration is not predicted the

minimum energy one. It was previously mentioned that

C interstitial is found unstable for our potential; the

same happens for potential of Ref. [2] though those of

Refs. [10,8] produce a metastable con®guration. When

mode analysis is performed on the latter, real vibration

eigenfrequencies are obtained, a few of them being very

small. Particularly, in the smallest frequency mode the

interstitial vibrates along the line AA of Fig. 4 concen-

trating about 50% of the kinetic energy. Such a mode,

eventually combined with others of low frequency, could

carry the interstitial through either site O or BO. The ®rst

path, relatively high in energy (0.14 eV) and thus slow,

would contribute mainly to transitions C�±C�; the sec-

ond path, implying no energy expense (some )0.01 eV)

and thus fast, would contribute mainly to transition C�A±

CÿA. Summarising, this argument gives the C con®gura-

tion some chance to be consistent with the experimental

®ndings of Ref. [34].

5. Summary

An EAM type potential for Zr ®tted to room tem-

perature elastic constants [9] and that accounts for the

experimental self-interstitial relaxation volume has been

developed. The potential, as well as other EAMs, is

consistent with the low measured Em
v [27]. New PAS

experiments on high purity Zr single crystals [30] were
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unable to either con®rm or disprove the previous ®nd-

ing. This, when considering the relatively high selfdif-

fusion Q value measured recently [31], casts some doubt

on the accepted Ef
v (®tted by the potential) that should

probably be larger. In such a case no particular di�culty

is anticipated for the potential ®tting in the sense of still

reproducing low values for Em
v , because both magni-

tudes, being controlled by di�erent potential details,

appear only loosely coupled.

Present calculations predict the stability of 2D small

vacancy clusters against 3D ones at the expense of a

signi®cant contribution of the entropy term to the free

energy; the same relative stability was obtained previ-

ously using pseudopotential theory but based only on

the con®gurational energy [33].

Regarding the self-interstitials, a review of results

obtained with present day's most reliable EAM poten-

tials indicates that a con®guration along the compact

row, either basal crowdion or basal dumbell, is the sta-

ble one. Such a defect migrates essentially in 1D, the

possibility of 2D migration being much reduced. Both

results are hardly consistent with available experimental

data [24,34]. We believe that new HDS and internal

friction experiments in single crystals, the ®rst particu-

larly searching for p�2� invariant, and the second to

con®rm the frozen-free split and identify proper com-

pliances, can shed some light on the matter.
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